C
DISCOVERY FOR ENERGY

o . Phylogenetic Classification of Metagenomic Data e d
szlrmg;}?ergjgct ress Dylan Chivian®.2", Paramvir S. Dehal'2, Adam P. Arkin'23 (*DCChivian@Ibl.gov, 'VIMSS, 2LBNL, 3UC, Berkeley)

VIMSS et s for III Massachusetts @ UNIVERSITY O
O Microbial Stress and Survival I l Technology WASHINGTO

ESPP2 MicroCOSM: Microbial Clade-Oriented Sequence Markers for DOE GENOMICS:GTL

Berkel

Universiiy of California

OAKRIDGENATIONAL LABORATORY

STATE UNIVERSITY

COSM COIINTS

SPFCIFS TRFF

ABSTRACT

including children counts). Counts with the requirement of presence within >60% and >75% of clade member
species are also reported.

field sites and, among other methods, will employ metagenomics in this endeavor. Metagenomics
projects that seek to elucidate the population structure of microbial ecosystems are faced with the
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genes that are not subject to inter-clade horizontal transfer through investigation of finished bacterial
and archaeal genomes. These clade-oriented sequence markers allow for a method, which we have 1l Y-Proteobacteria (34)

named “MicroCOSM™, that greatly increases the probability that a marker will be found in any given
sequence and therefore offers improved coverage for phylogenetic classification and quantification of
microbial types in an environmental sample.
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a-Proteobacteria remaining species and built a test set of COSMs. We then examined the fraction of each of these 31

o es that could ly be assigned to high-level taxonomic groups (e.g. phyla) using 16S
rRNA genes, the 31 COGs used by von Mering et al., our test COSMs and SCP-COSMs (both with
>75% prevalence requirement), and a BLAST comparison with the proteomes of the remaining
species. We also examined more fine-grained taxonomic assignment at the sister level with BLAST
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genes that are best for branch placement within the clade, as they are not subject to duplication nor
horizontal transfer. Additionally, novel families (NOVEL) that are only observed within a given
clade may represent the introduction of protein families to that lineage.
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CONCI LISIONS

clade-oriented sequence markers. Using stringent requirements for inclusion in the gene family,
coverage increases from the ~1% of universal COGs to approximately 3-6% with COSMs,
accompanied by a small loss in accuracy. Greater coverage but less accuracy is expected using looser
thresholds. Comparison with pair-wise BLAST-based methods shows COSMs to be far more
accurate, albeit with less coverage. Lastly, unlike BLAST-based methods, SCP-COSMs permit
placement explicitly on the tree, and permit greater coverage with which to access the population
structure of a microbial community than universal COGs alone. We expect that more comprehensive
sequencing in poorly sampled clades, such as Clostridia, will improve results in future versions of the
method.

°
NoveL

QCAN METAGFEFNOMIC QFOIIFNCE WITH COSMe

Bacilales

be built and thresholds for membership in the protein family determined.
1. Make a multiple sequence alignment (MSA) of COSM proteins and build profile.
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